
Coding Rules & Guidelines

I. Hrivnacova, IPN Orsay

16th Geant4 Collaboration Meeting, 19 - 23 September, SLAC

I. Hrivnacova, IPN Orsay 2

Outline

● Introduction
● Coding Guidelines for Geant4 developers

● Their check-ability
● Following the guidelines in the Geant4 code

● New N&E Examples Coding Guidelines
● Motivations

I. Hrivnacova, IPN Orsay 3

Introduction

● From Geant4 Coding Guideline Web page:
● "For a world-wide collaboration like GEANT4, it is therefore

important not to impose rigid rules or style-conventions, but to
maintain flexible and adequate guidelines for programming and
coding styles."

● "C++ was designed to support data abstraction and object-
oriented programming in addition to traditional C programming
techniques. It was not meant to force any particular
programming style upon all users" (B.Stroustrup).

● Set of Geant4 Coding Guidelines is very “light”
● http://geant4.web.cern.ch/geant4/collaboration/coding_guidelines.shtml

http://geant4.web.cern.ch/geant4/collaboration/coding_guidelines.shtml

I. Hrivnacova, IPN Orsay 4

Geant4 Coding Guidelines Sets
The Geant4 coding guidelines are grouped in the following sets:

● Programming guidelines
● Aid adherence to the object-oriented paradigm (data-hiding,

encapsulation, etc ...), and promote performance and portability

● Coding-style guidelines
● Promote code maintainability and readability

● Guidelines for ISO/ANSI Compliant Code
● Facilitate the porting of Geant4 to different systems/architectures

The guidelines listed on the following slides are preceded with

if their automatic checking seems to be possible

If their automatic checking does not seem to be possible or

if checking would require precising the checked rule

I. Hrivnacova, IPN Orsay 5

Geant4 Coding Guidelines

Programming
The following guidelines for using the features of the programming language aid
adherence to the object-oriented paradigm (data-hiding, encapsulation, etc ...),
and promote performance and portability:

Every class should have at least one constructor and a destructor.

Each class should have an assignment operator and a copy constructor

Data members should be made private/protected and in case accessed by
inline functions.

The use of global variables or functions should be avoided.

The use of friend classes should be avoided where possible.

The use of type casting, especially from const* or const, should be avoided.

Hard-coded numbers within the code must be avoided; const should be used
instead.

Instead of the raw C types, G4 types should be used.

I. Hrivnacova, IPN Orsay 6

Geant4 Coding Guidelines

Coding-style
The following coding-style guidelines promote code maintainability and
readability

The public, protected and private keywords must be used explicitly in the
class declaration.

Self-explanatory, English names for constants, variables and functions
should be used.

The code should be properly indented.

Each GEANT4 class name should begin with G4.

Each header file should contain only one or related class declarations.

The implementation code for a class should be contained in a single source
file.

Each header file must be protected from multiple inclusions.

Each file should contain a short header about the author, updates (CVS) and
date.

I. Hrivnacova, IPN Orsay 7

Geant4 Coding Guidelines

for ISO/ANSI Compliant Code
Using the following style guidelines will facilitate the porting of Geant4 to
different systems/architectures:

Where possible, consider using the defined type G4String instead of STL
std::string in the code.

Use the following keywords defined in global: G4cout, G4cerr, G4cin,
G4endl instead of: cout, cerr, cin, endl.

In every other case prepend std::. For example, for stream manipulators:
std::ws, std::setprecision, std::setw.....

Prepend std:: for every STL type declaration. Example: std::vector myvector;

I. Hrivnacova, IPN Orsay 8

Looking at the code

● Inspecting geant4-09-04-ref07 source
● ALICE Code Checker

● Developed by Paolo Tonella and Surafel Lemma Abebe, FBK Trentino
● Requires:

– 1. Java
– 2. srcML toolkit (,which includes src2srcml) from:

http://www.sdml.info/projects/srcml/
● Directly applicable to 5 rules (after renaming classes to have

extensions .h and .cxx)

● Find + grep for types to be avoided
● Be careful: not to search 'double' (would count G4double as well) but

' double '; not to count comment lines ...

http://www.sdml.info/projects/srcml/

I. Hrivnacova, IPN Orsay 9

Are The Guidelines Followed ?

● Constructor/destructor
● No friend classes
● Class prefix G4

● Assignment operator & copy
constructor missing

● Public data members - in 90
classes !

● Global variables – in 47 classes

● Raw C types (double, ...)
● Multiple inclusion protection

missing in – in 4 classes
● Std::string instead of G4String
● cout, cerr, endl instead of G4...

● Casting
● Hard coded numbers
● Proper indented code
● Author, date
● ... ?

No Geant4 automatic checking tool
 => one can find many of “to be avoided” in the code

I. Hrivnacova, IPN Orsay 10

New N&E Examples
Coding Guidelines

● In addition to Geant4 guidelines
● The new rules were discussed and approved at a WG phone

meeting in June
● with finalizing last rules by votes on Doodle poll

● Grouped in 5 sets:
● Naming conventions, Coding rules, Style rules, Documentation,

Application guidelines

● More rigid than Geant4 guidelines
● To improve the code

Quality

Readability

Understandability

● http://geant4.web.cern.ch/geant4/collaboration/working_groups/novice_extended_examples/coding_guidelines_final.txt

http://geant4.web.cern.ch/geant4/collaboration/working_groups/novice_extended_examples/coding_guidelines_final.txt

I. Hrivnacova, IPN Orsay 11

N&E Examples Coding Guidelines

Naming Conventions
1.1. Classes in common (the common place with sharable
classes used by more extended examples) use names starting
with the prefix 'ExG4'

– If there are more than one classes of the same name, then all classes
names are followed by a number: (00), 01, 02, 03 ...

– The number 00 should be used for helper classes which are not supposed to
be directly usable in user application, eg. physics list with geantino only.

● Motivation : The generic naming scheme make the classes directly
usable in a user application (no clash with existing user application
classes names) and it facilitates the procedure of importing classes in
concrete examples

I. Hrivnacova, IPN Orsay 12

N&E Examples Coding Guidelines

Naming Conventions
1.2. Classes in extended examples (features) use names with a
prefix, specific to the demonstrated feature and different from
the one reserved for classes in common, or names without a
prefix.

● Motivation: Unique class names facilitate referencing the classes from
other code. (Accepting also the names without a prefix was a
compromise with EM standard physics developers.)

1.3. Class member functions start with an upper case letter.

1.4. Class data members start with a prefix "f" followed with an
upper case letter.

1.5. Local variables and functions argument names start with a
lower case letter except for the names starting with known
acronyms in capital case letters.

● Motivation: These rules makes easier to understand the code.

I. Hrivnacova, IPN Orsay 13

N&E Examples Coding Guidelines

Coding rules
2.1. Re-declare virtual functions in the header files with keyword
virtual.

● Motivation: It makes easier to see which functions are prescribed in the
base class (and usually called by kernel)

2.2. Provide the initialization list of the class data members (and
base class if present) in all class constructors.

● Motivation: This prevents from use of uninitialized values.

2.3. Do not introduce dummy functions or classes if they have
no use in the example.

● Motivation: Let's not complicate the code more than needed.

2.4. All commands implemented in messengers should be
demonstrated in a run macro (can be done also via commented
lines).

● Motivation: Makes them easier to test.

I. Hrivnacova, IPN Orsay 14

N&E Examples Coding Guidelines

Style rules
3.1. Avoid using long lines (more than 80 characters) where
possible, avoid using tabulators.

3.2. Each function implementation in the .cc file should be
preceded by the agreed separator line:

 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......

3.3. Avoid using more than one empty lines or personalized
separators in the code.

● Motivation: Improve readability of the code.

I. Hrivnacova, IPN Orsay 15

N&E Examples Coding Guidelines

Documentation
4.1. Each example is provided with a README text file and its
modified version .README for automatic generation of the Web
documentation with Doxygen.

● The latter differs from the former only by the modifications needed for a correct
representation of the file on the Web.

4.2. The files with C++ code start with a standard header
including Geant4 copyright, the SVN Id keyword and a file
description.

● Example of a file description:

 /// \file N1DetectorConstruction.hh

 /// \brief Definition of the N1DetectorConstruction class

4.3. Each class contains a description of the class functionality
placed just before a class definition in the class header file (.hh)

● The comment lines with a class description start with /// (instead of standard //) in
order to be recognized by Doxygen.

I. Hrivnacova, IPN Orsay 16

N&E Examples Coding Guidelines

Application conventions
5.1. It is recommended to define materials with using NIST
manager unless there is a specific reason for explicit material
definition.

● Motivation: NIST manager guaranties the correct values for material
properties and users should be encouraged to get familiar with it.

5.2. It is recommended to use the physics list classes and
physics builders provided in Geant4 unless there is a specific
reason for using an explicitly defined physics list.

● Motivation: The physics lists and builders classes were defined by the
experts, they also allow the users to provide a reference of their physics
setup

I. Hrivnacova, IPN Orsay 17

Conclusion

● Geant4 has quite a light set of coding guidelines
● Their following by developers is on volunteer basis

● Most of the rules are check-able, but no automatic checking is
performed

● The code is not always compliant with the rules

● New set of coding guidelines was agreed for new N&E
examples

● Introducing a tool for automatic checking can improve the
Geant4 code quality

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

